
Lecture 7

Derivation of the Diffusion Equation

In this lecture, we give two very different techniques for deriving the diffusion equation.

The first is based upoon a Galerkin method in angle, and the second is based upon an

asymptotic expansion.

1 A Galerkin Method

We begin with the differential transport equation:

µ
∂ψ

∂x
+ σtψ =

σs

4π
φ+

Qo

4π
. (1)

We propose a Galerkin approximation to Eq. (1) based upon a linear trial space of the

following form:

ψ(x, µ) =
a(x)

4π
+
3b(x)µ

4π
, (2)

with the weighting space equal to the trial space. Note that

2π

∫ +1

−1

ψ(x, µ) dµ = φ(x) = a(x) , (3a)

2π

∫ +1

−1

ψ(x, µ)µ dµ = J(x) = b(x) . (3b)
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Thus Eq. (2) can be rewritten as

ψ(x, µ) =
φ(x)

4π
+
3J(x)µ

4π
. (4)

Substituting from Eq. (4) into Eq. (1) and integrating over all directions, we get the zero’th

moment or balance equation:

∂J

∂x
+ σa = Q0 . (5)

Substituting from (4) into (1) multiplying by µ, and integrating over all directions we get

the the first-moment equation:

1

3

∂φ

∂x
+ σtJ = 0 . (6)

Using Eq. (6) to solve for J, we get Fick’s law:

J = −D
∂φ

∂x
, (7)

where

D =
1

3σt

. (8)

Substituting from Eq. (7) into Eq. (5) we get the diffusion equation:

− ∂

∂x
D

∂φ

∂x
+ σaφ = Q0 . (9)

Thus we see from the derivation that the diffusion equation is exact whenever the flux is

either isotropic or linearly anisotropic. However, the derivation gives no hint as to when
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one would expect the transport solution to be linear in angle. Furthermore, if the Galerkin

approximation is made for the time-dependent transport equation rather than the steady-

state equation, one does not obtain the diffusion equation unless one also assumes that

∂J
∂t
= 0.

1.1 Asymptotic Derivation

We next use asymptotics to obtain the time-dependent diffusion equation. Unlike the

Galerkin derivation, this derivation does give insight into the conditions under which one

would expect the transport solution to be linear in µ and hence diffusive. The central theme

of our asymptotic expansion is to first use a “small” dimensionless parameter, ε, to scale

parameters in a non-dimensional form of the transport equation, and thereby establish

the relative sizes of these parameters in the limit as ε → 0. The transport solution is

then expanded in a power series in ε, and substituted into the scaled transport equation.

The terms of that equation that multiply each power of ε are grouped together to obtain

a hierarchical system of equations for the solution. Our purpose here is to define an

asymptotic expansion of the transport equation with a leading-order solution that satisfies

the diffusion equation, thereby defining a formal mathematical limit in which transport

theory becomes equivalent to diffusion theory.
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We begin with the time-dependent transport equation:

1

v

∂ψ

∂t
+ µ

∂ψ

∂x
+ σtψ =

σs

4π
φ+

Q0

4π
. (10)

The following quantities are defined as follows for the purpose of putting this equation in

a non-dimensional form.

ψ̄: a constant value of ψ that is characteristic of the solution for ψ.

∆t: a constant time interval that characterizes the temporal scale length of
the solution for ψ.

∆x: a constant length that characterizes the spatial scale length of the solu-
tion for ψ.

The temporal and spatial scale lengths are used to define a non-dimensional time vari-

able,

t′ =
t

∆t
, (11)

and a non-dimensional spatial variable,

x′ =
x

∆x
(12)

respectively. Finally, we obtain the desired non-dimensional form of the transport equation

by dividing Eq. (10) by ψ̂σtψ̄, transforming to the non-dimensional time and space variables,

and expressing σs as σt − σa:

α
∂ψ̂

∂t′
+ βµ

∂ψ̂

∂x′ + ψ̂ =
σt − σa

σt

1

4π
φ̂+

Q̂0

4π
, (13)
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where

α =
1

σtv∆t
, (14)

ψ̂ =
ψ

ψ̄
, (15)

β =
1

σt∆x
, (16)

φ̂ =
φ

ψ̄
, (17)

Q̂0 =
Q0

σtψ̄
. (18)

The parameter, α, represents the mean time between particle collisions divided by the

temporal scale length of the solution, and the quantity, β, represents the mean-free-path

divided by the spatial scale length of the solution. To obtain a diffusion solution to leading-

order, we assume that ψ̄ is order one, scale α by ε2, scale β by ε, and scale σa by ε2, and

scale Q̂0 by ε2. This means that the diffusion limit is characterized by time scales that

are “very much smaller” than the mean time between particle collisions, spatial scales that

are “much smaller” than a mean-free-path, an absorption cross-section that is “very much

smaller” than the total cross-section, and a source that is “very much smaller” than σtψ̄.

The source scaling simply arises from the fact that we have assumed that ψ̄ is order one,

i.e., that the first term in the expansion with respect to ε is ε0. If the source is order one, the

first term in the expansion must be ε−2. If the appropriate source scaling is not performed,

the asymptotic analysis indicates that the source must be zero. The appropriate scaling is
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recognized by the fact that it eliminates this unacceptable result.

Applying the scaling to Eq. (13), we get

ε2α
∂ψ̂

∂t′
+ εβµ

∂ψ̂

∂x′ + ψ̂ =
σt − σaε

2

σt

1

4π
φ̂+ ε2 Q̂0

4π
, (19)

We next expand the solution to Eq. (19) in powers of ε:

ψ(x, µ) =
∞∑

n=0

ψ(n)(x, µ) εn . (20)

Substituting from Eq. (20) into Eq. (19), we collect terms associated with each order of ε.

The following equations are obtained.

The equation for order ε0:

ψ̂(0) =
1

4π
φ̂(0) . (21)

This equation states that the leading order solution is isotropic in angle.

The equation for order ε1:

βµ
∂ψ(0)

∂x′ + ψ̂(1) =
1

4π
φ(1) . (22)

Integrating Eq. (22) over all directions, and recognizing that the integral of ψ̂(1) is φ̂(1), we

get what is called a solvability condition:

2π

∫ +1

−1

βµ
∂ψ(0)

∂x′ dµ = 0 . (23)
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Taking Eq. (21) into account, we find that Eq. (23) is indeed satisfied. Rearranging Eq. (22),

and taking Eq. (21) into account, we get

ψ̂(1) = φ̂(1) − β
µ

4π

∂φ(0)

∂x′ . (24)

Equation (24) states that the first-order component of the solution is linearly anisotropic

in µ. The equation for order ε2:

α
∂ψ̂(0)

∂t′
+ βµ

∂ψ̂(1)

∂x′ + ψ̂(2) =
1

4π
φ̂(2) − σa

σt

1

4π
φ̂(0) +

Q̂0

4π
. (25)

Substituting from Eqs. (21) and (24) into Eq. (25), and integrating over all directions, and

recognizing that the integral of ψ̂(2) is φ̂(2), we get

α
∂φ̂(0)

∂t′
− β

∂

∂x′
β

3

∂φ̂(0)

∂x′ +
σa

σt

φ̂(0) = Q̂0 . (26)

Multiplying Eq. (26) by σtψ̄ and transforming back to the dimensional time and space

variables, we obtain

1

v

∂φ(0)

∂t
− ∂

∂x

1

3σt

∂φ(0)

∂x
+ σaφ

(0) = Q0 . (27)

Equation (27) states that the leading-order solution to the asymptotic expansion satisfies

the diffusion equation. It is in this sense that the transport equation becomes equivalent

to the diffusion equation in the asymptotic limit defined here. The asymptotic expansion

associated with the diffusion limit is necessarily valid only in regions several mean-free-

paths from boundaries, material interfaces, or source discontinutities. Sufficiently rapid
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variations in cross-sections or sources can render the scale length assumptions associated

with the expansion invalid. The transport solution can be diffusive at the boundaries of

diffusive regions, depending upon the incident angular flux shape, but it more often is not.

The region of transition from a non-diffusive transport solution to a diffusive solution is

only a few mean-free-paths thick and the solution within it generally varies quite rapidly.

Such a region is referred to as a boundary layer.

1.2 Diffusion Boundary Conditions

We cannot meet vacuum boundary conditions exactly with our linear trial space. Thus we

must meet them approximately. One of the most common approximations is the Marshak

boundary condition. For instance, the exact vacuum boundary condition at x = xL is

ψ(xL, µ) = 0 , µ ≥ 0, (28)

The Marshak approximation to Eq. (9) preserves the rate of particle inflow:

2π

∫ 1

0

ψ(xL, µ)µ dµ = 0 . (29)

Substituting from Eq. (4) into Eq. (29), and evaluating the integral, we get

φ

4
+

J

2
= 0 . (30)

Using Eqs. (7) and (8), Eq. (30) can rewritten as

φ −
(
2

3
λ

∂φ

∂x

)
= 0 , (31)
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φ = 0

( )x Lφ

2/3 λ

Left Boundary

Figure 1: Solution extrapolation at boundary with vacuum condition.

where λ ≡ 1/σt is the mean-free-path. Equation (31) shows that the Marshak vacuum

condition is equivalent to making the flux extrapolate to zero at a distance of 2/3 of a

mean-free-path from the boundary, as illustrated in Fig. 1.

Let us suppose that we have a non-zero angular flux, f(µ), incident at the left boundary.

Then the exact boundary condition is the

ψ(xL, µ) = f(µ) , µ ≥ 0. (32)

As in the vacuum case, the Marshak condition simply preserves the rate of particle inflow:

2π

∫ 1

0

ψ(xL, µ)µ dµ = 2π

∫ 1

0

f(µ)µ dµ . (33)

Substituting from Eq. (4) into Eq. (33), and evaluating the integral, we get

φ

4
+

J

2
= 2π

∫ 1

0

f(µ)µ dµ ≡ j+ , (34)
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Figure 2: Solution extrapolation at boundary with source condition.

where j+ is called the half-range incoming current. Equation (34) can rewritten as

φ −
(
2

3
λ

∂φ

∂x

)
= 4j+ ≡ φb , (35)

where φb

4π
represents an “equivalent” isotropic boundary flux in the sense that φb

4π
has the

same incoming half-range current as f(µ). Thus we see from Eq. (35) that the Marshak

source condition is equivalent to making the scalar flux extrapolate to an equivalent bound-

ary scalar flux value at a distance of 2/3 of a mean-free-path from the boundary. This is

illustrated in Fig. 2.

Reflective (specular) boundary conditions must also be considered. Assuming such a

condition at x = xL, the exact transport boundary condition is

ψ(xL, µ) = ψ(xL,−µ) , µ ≥ 0. (36)

In this case, one simply sets J = 0 on the boundary. This is not unique to Marshak

boundary conditions, but rather is the only physically correct choice.
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Conditions at the interface between two dissimilar materials must also be considered.

Let xi denote the location of an interface. The transport angular flux solution must be

continuous at a material interface. This implies that all angular moments of the angular

flux must also be continuous. Thus the scalar flux and current must be continuous at a

material interface. These are the interface conditions for the diffusion equation. As in the

case of reflection, these conditions represent the only physically correct choice.

Marshak conditions are not the most accurate conditions for the diffusion equation,

but they are the most accurate of the conditions that can be derived from simple physical

considerations. More accurate conditions generally require information from exact trans-

port solutions. For instance, asymptotic methods can be used to derive exact diffusion

boundary conditions, but the associated boundary-layer analyses are very complicated and

essentially require exact transport solutions.

2 An Example Diffusion Solution

We next solve the diffusion equation on [0, x0] with a constant isotropic distributed source,

Q0

4π
, σt = σs, and vacuum boundary conditions. The equation to be solved is

− ∂

∂x
D

∂φ

∂x
= Q0 , x ∈ [0, x0], (37)
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with a left boundary condition given by

φ

4
+

J

2
= 0 , x = 0, (38a)

and a right boundary condition given by

−φ

4
+

J

2
= 0 , x = x0. (38b)

The homogeneous solution to Eq. (37) is

φh = a+ bx , (39)

and the particular solution is

φp = −Q0x
2

2D
. (40)

Thus the total solution is

φ = a+ bx − Q0x
2

2D
. (41)

The constants a and b are determined by the boundary conditions. In particular, substi-

tuting from Eq. (41) into Eqs. (38a) and (38b), we respectively obtain

a − 2Db = 0 , (42a)

and

a+ bx0 − Q0x
2
0

2D
= 2D

(
b − 2Q0x0

2D

)
= 0 . (42b)
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Solving Eqs. (42a) and (42b), we get

a = Q0x0 , (43a)

b =
Q0x0

2D
. (43b)

Substituting from Eqs. (43a) and (43b) into Eq. (41), we obtain the following solution:

φ =
Q0

2D

(
2Dx0 + x0x − x2

)
. (44)
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